

300mA CMOS LDO

0.9V Adjustable Voltage with Enable Function

SOT-25

Pin Definition:

- 1. Input
- 2. Ground
- 3. Enable
- 4. Adjustable
- 5. Output

General Description

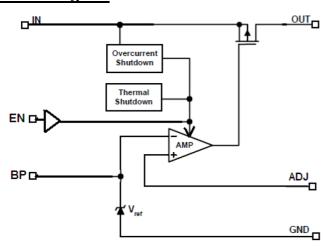
The TS9015 is a low dropout voltage linear regulator. There are device designed specifically for battery-operated systems. Ground current is very small as 50uA(typ), that significantly extending battery life. Low power consumption and high accuracy is achieved through CMOS and programmable fuse technologies. Output voltage is able to adjust from 1V to 6V. The TS9015 consists of a high-precision voltage reference, and error correction circuit, and a current limited output driver. With good transient responses, output remains stable even during load changes. The EN input enables to be turned off, resulting in reduced power consumption.

TS9015 have high ripple rejection ratios, a 470pF capacitor from the Bypass pin to ground to reduces noise present on the internal reference, which in turn significantly reduces output noise. If output noise is not a concern, the Bypass pin may be left unconnected. Larger capacitor values can be used, but the results in a longer time period to rate output voltage when power is initially applied.

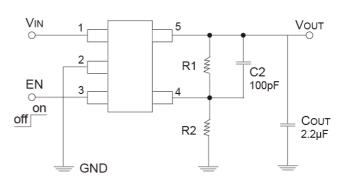
Features

- Output current is excess of 300mA
- Low power consumption: 50uA(typ.)
- Output voltage ±2%
- Internal current limit
- Thermal shutdown
- Power saving shutdown mode
- P-MOS output stage with low Rds(on)
- Adjustable output voltage from 1V to 5.4V

Applications


- Instrumentation
- Wireless device
- Battery powered equipment
- Electronic scales
- Cordless phone

Ordering Information


Part No.	Package	Packing			
TS9015CX5 RFG	SOT-25	3Kpcs / 7" Reel			

Note: "G" denote for Halogen Free Product

Block Diagram

Typical Application Circuit

 $V_{OUT} = 0.9$ (1 + R1 / R2) C2 is unnecessary when R1 or R2 < 20K

1/5 Version: D08

TS9015 300mA CMOS LDO

0.9V Adjustable Voltage with Enable Function

Absolute Maximum Rating

Parameter	Symbol	Limit	Unit
Input Supply Voltage	V _{IN}	+2.0 ~ +7	V
Enable Input Voltage	V_{CE}	Gnd-0.3 ~ V _{IN} +0.3	V
Output Current	Io	500	mA
Power Dissipation @ $T_A \leq 25^{\circ}C$	P _D	400	mW
Thermal Resistance	Θ_{JA}	140	°C/W
Operating Junction Temperature Range	TJ	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C
Lead Soldering Temperature (260°C)		10	S

Notes 1: Stress above the listed absolute rating may cause permanent damage to the device.

Notes 2: Θ_{JA} is measured with the PCB copper area of approximately 1 in² (multi-layer)

Electrical Characteristics (Vin=Vout +2V, Ta = 25°C, unless otherwise noted)

Parameter	Symbol	Test Condition			Min	Тур	Max	Units
Input Voltage	V _{IN}	(Note 1)			2.0		7	V
Dropout Voltage	V_{DROP}	I _O =300mA	1.0V< V _{O(NOM} ≤2.0V			650	1000	
		$V_{O} = V_{O(NOM)} - 2.0\%$	2.0V< V _{O(}	2.0V< V _{O(NOM} ≤2.8V		450	700	mV
			2.8V< V _{O(}	2.8V< V _{O(NOM}		300	500	
Output Current	Io	V _O >0.96*Vrating			300			mA
Current Limit	I _{LIM}					500		mA
Ground Pin Current	I _{GND}	I _O =1mA to 150mA				50	85	uA
Line Regulation	REG _{LINE}	I _O =1mA		V _O < 2.0V			0.1	%
		$V_{IN} = V_{O} + 1 \text{ to } V_{O} + 2$ $V_{O} \ge 2.0V$				0.15	%	
Load Regulation	REG _{LOAD}	I _O =10mA to 300mA				0.2	1	%
Over Temp. Shutdown	OTS					125		°C
Over Temp. Hysterisis	OTH					30		°C
Power Supply Rejection	PSRR	I _O =200mA C _O =2.2mF		f=100Hz		60		dB
				f=1kHz		50		
				f=10kHz		35		
Output Voltage Noise	eN	f=10Hz to 100kHz, I _O =10mA		C _O =2.2nF		30		uVrms
ADJ Input Bias Current	I _{ADJ}					1		uA
ADJ Reference Voltage	V_{REF}				0.87	0.9	0.918	V
EN Input Throchold	V_{EH}	I _O =10mA		1.6		V _{IN}	V	
EN Input Threshold	V _{EL}	I _O =10mA			0		0.4	V
EN Input Piac Current	I _{EH}	$V_{EN} = V_{IN}$, $V_{IN} = 2.5 V$ to $7 V$				0.1	uA	
EN Input Bias Current	I _{EL}	V _{EN} =0V, V _{IN} =2.5V to 7V					1	uA

Note 1: $V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}$

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

> 2/5 Version: D08

TS9015 300mA CMOS LDO 0.9V Adjustable Voltage with Enable Function

Detailed Description

The TS9015 of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection and thermal shutdown. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150 C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 100 C. The TS9015 switches from voltage mode to current mode when the load exceeds the rated output current.

External Capacitors

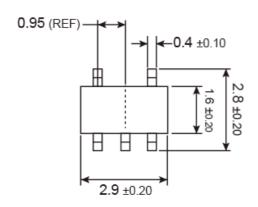
The TS9015 is stable with an output capacitor to ground of 2.2 μ F or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a 0.1 μ F ceramic capacitor with a 10 μ F Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost. A second capacitor is recommended between the input and ground to stabilize ν F The input capacitor should be at least 0.1 μ F to have a beneficial effect.

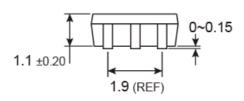
All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

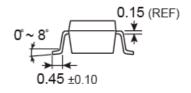
Enable

The Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than 1mA. This pin behaves much like an electronic switch.

3/5 Version: D08


TS9015


300mA CMOS LDO



SOT-25 Mechanical Drawing

Unit: Millimeters

Marking Diagram

A9 = Device Code

Y = Year Code

M = Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep,
 X=Oct, Y=Nov, Z=Dec)

L = Lot Code

4/5 Version: D08